EU Circular Talks Sufficiency in the Building Sector

BPIE

Zsolt Toth, Team Lead, BPIE - Building Performance Institute Europe

- Sufficiency: what does it mean in the building sector?
- What do we know about the impacts: literature and case studies
- Looking ahead: conclusions and recommendations

- EU Commission (DG ENV) project on "Sufficiency in the building sector" (Dec 23 – April 24)
 - What is sufficiency in the build environment?
 - What are the impacts?

Source: BPIE, Ramboll 2024 (Link)

SUFFICIENCY & CIRCULARITYBPIEDecision pyramid

- Many of the priorities and circular strategies for design and construction are well aligned with sufficiency
- Sufficiency provides an additional focus on:
 - Social foundations (needs and well-being)
 - Existing buildings stock

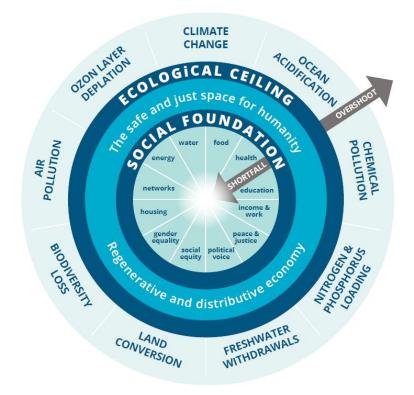
Responsible use of raw m and resources	aterials	Avoid premature demolition	>	Keep materials in the cycle
A minimise total AMOUNT of materials	B minimise ENVIRONMENTAL IMPACT of materials	C extend the USEFUL LIFE of buildings	D maximise the REUSABILITY of elements	E maximise the REUSABILITY OR RECYCLABILITY of materials
At question needs for new construction and/or fulfit them differently	gain insight into the environmental impact of the building (materials & energy) & optimise via TOTEM	ci design with potential for future functions (functional adaptability)	detailing with consideration for easy dismantling (reversibility)	al choose elements that c be dismantled into pur raw materials
A2 preserve the value of existing heritage	focus on reusing elements/materials & assess environmental impact via TOTEM	C2 design for adaptability: flexibility, versatility, "support-infilf-principle"	D2 design with consideration for modularity, prefabrication, standardisation	F2 harmful/toxic substances out
AS share spaces with third parties	Invest in materials with high recycled content & assess environmental impact via TOTEM	design with consideration for future extension/ "In-fill"	DS consider compatibility & interchangeability when choosing construction elements	ES choose (raw) materials that are biodegradabl or can be disposed of responsibly
A4 share technical equipment with third parties	Det Jocus on bio-based structural elements/ materials & assess environmental impact via TOTEM	C4 design for future maintenance, upgrading & repair: include independent & accessible functional layers	D4 choose elements with contractual agreement regarding take-back schemes	E4 choose (raw) material with already existing closed loops
A5 make spaces multifunctional	85 avoid irresponsible management of natural resources (forest cover, arable farming, quarties, etc.)	C5 choose robust & high-quality materials	D5 identify existing valuable parts during renovation/ dismantling	ES choose elements/ materials with a take-back guarantee and/or recycling guarantee
A6 dematerialisation at the structural level: design fightweight structures	-B6 minimis e energy needs	C6 Building stock regularly maintained & optimally managed	B6 identify & record elements/ components of the new building	E6 identify (raw) materials in existing elements/ components
Av dematerialisation at the material level: design with raw materi- als as finishing (without additional layers)	-89 use renewable energy sources	C9 contractually encourage the extension of useful life	D7 preserve elements that have coltural value (e.g. heritage) in subsequent building cycles	identify elements, materials & raw materials during recovation and/or dismantling
AS dematerialisation at the technical level: design smart-tech solutions	B8 meet remaining energy needs as effi- ciently as possible			E8 tap into second-ham markets or platform for selective demolitio and/or disassembly

Source: Circular Flanders


BPIE SUFFICIENCY IN THE BUILDING SECTOR Decision pyramid

MOST preferred

LEAST


preferred

 Applying sufficiency principles to buildings can take many different forms

- Human wellbeing within planetary boundaries
 - Inside: SDGs => social housing, accessibility, affordability
 - Outside: Planetary boundaries
- Sufficiency aligns with a vision that seeks to fulfil the international human right to adequate housing, viewing buildings as vital components of societal well-being

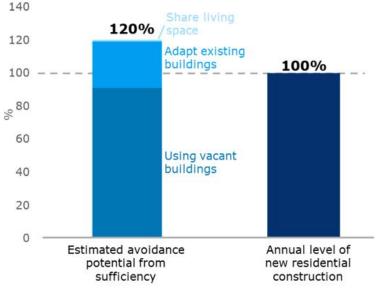
While efficiency is about doing things right, sufficiency is about doing the right things.

26/3/2025 EU CircularTalks - Sufficiency in the Built Environment"

SUFFICIENCY - THE EVIDENCE

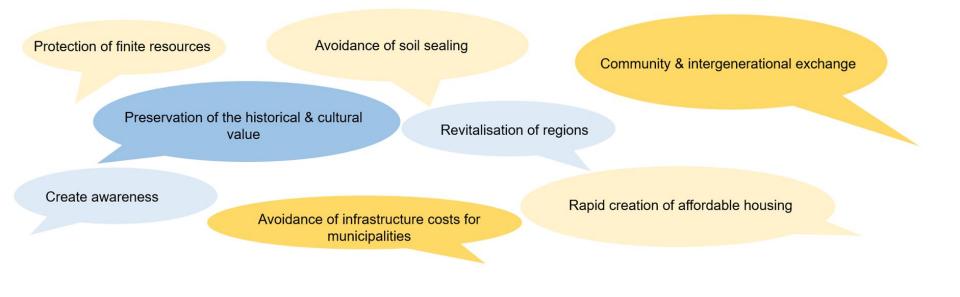
The potential: What do we know so far?

- GHG savings through using the existing stock instead of building new, while providing enough homes
 - E.g. for Germany (BBSR 2023), for the Netherlands (IEB 2024)
- ... along with massive resource savings
 - E.g. 60% for Germany (BBSR 2023), EU (Zimmermann 2022)
- Huge theoretical housing potential
 - E.g. using under-occupied homes > for 100 million people (Lage et al. 2025)
- What's in for investors?
 - 4 trillion investment opportunity in urban regeneration projects (Systemiq 2024)
- Social acceptance higher than one would expect from the outset
 - E.g. analysis of citizens assemblys in 8 EU MS (Lage et al. 2024), WLC experts in public consultation of WLC EU Roadmap
 - E.g. several urveys: 30% of home-owners in Germany: "home is too large"


SUFFICIENCY – CASE STUDIES BPIE The potential: What do we know so far?

COUNTRY	INITIATIVE	MECHANISM	CURRENT OUTCOMES	ESTIMATED POTENTIAL (max)	
				Avoided new construction	Avoided embodied emissions
	1TOIT2AGES Brussels and Wallonia	Mobilise 'invisible living space'	Facilitated 604 matches in 2023	26.800 m ²	15.000 tCO ₂
	Plan lutte contre les logements vacants	National strategy to map vacancies and making them	1,1 Mio vacant buildings; over 6.000 "exited" vacancy	20.190.000 m ²	9.500.000 tCO ₂
	National	habitable	status		
	Aus Alt mach 2 Oder mehr	Premium for consultation for reconstruction of single-	A quarter of homeowners considers a reconstruction	23.526.000 m ²	11.200.000 tCO ₂
	Pilot project Ravensburg	family buildings			
	Empty Spaces for affordable houses National	Mapping vacancies and making them habitable	Estimates of 215.000 usable units after renovation	12.106.000 m ²	5.750.000 tCO ₂
	Parkwest Dublin 12 The Plaza Office building in Dublin	Conversion of offices into housing units	86 social housing units created	5.800 m ²	2.759 tCO ₂ (- 82% less embodied carbon
					compared to new built)

Source: BPIE, Ramboll 2024 (Link)


The combined potential of the analysed sufficiency initiatives (BE, FR, DE) in comparison with annual new construction activity in these countries.

Source: BPIE, Ramboll 2024 (Link)

BPIE Sufficiency – Case Studies The potential: What do we know so far?

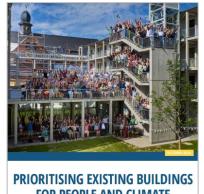
Harvesting positive social, economic and environmental impact of sufficiency policies:

26/3/2025 EU CircularTalks - Sufficiency in the Built Environment"

Do we have the right metrics and KPIs driving building regulation?

Existing building policies have failed to alleviate planetary pressure, inequality and housing shortages, as they rely on a narrow view of carbon and energy intensity metrics. Savings are offset by floor area growth per capita which continues to outpace population growth.

26/3/2025 EU CircularTalks - Sufficiency in the Built Environment"



How to create value from doing less?

Maximising the potential of existing building stock requires fundamentally rethinking the persistent focus on new construction and traditional building methods. "New" is not always better — there's cultural and historical value in thoughtfully repurposing existing structures.

- **1.** Make best use of vacant or underoccupied buildings by collecting data
- 2. Prioritise and incentivise the preservation, repurposing and reuse of the existing building stock ahead of new construction
- 3. Support experimentation of sufficiency initiatives and exchange of experiences and awareness raising
- 4. Use synergies with other policy fields and forge new alliances
- 5. Invest in research on the qualitative and quantitative impacts of sufficiency initiatives

SUFFICIENCY AS A STRATEGY TO ADDRESS THE UUSING CRISIS, ACHIEVE CLIMATE & RESOURCE TARGET AND REVITALISE COMMUNITIES

zsolt.toth@bpie.eu lisa.graaf@bpie.eu

www.bpie.eu Follow us:

¥ f in

